Boost.MultiIndex Hashed indices reference"boost/multi_index/hashed_index_fwd.hpp" synopsis"boost/multi_index/hashed_index.hpp" synopsis
"boost/multi_index/hashed_index_fwd.hpp" synopsisnamespace boost{ namespace multi_index{ // index specifiers hashed_unique and hashed_non_unique template<consult hashed_unique reference for arguments> struct hashed_unique; template<consult hashed_non_unique reference for arguments> struct hashed_non_unique; // indices namespace detail{ template<implementation defined> class index name is implementation defined; } // namespace boost::multi_index::detail } // namespace boost::multi_index } // namespace boost
hashed_index_fwd.hpp provides forward declarations for index specifiers
hashed_unique and hashed_non_unique and
their associated hashed index classes.
"boost/multi_index/hashed_index.hpp" synopsis#include <initializer_list> namespace boost{ namespace multi_index{ // index specifiers hashed_unique and hashed_non_unique template<consult hashed_unique reference for arguments> struct hashed_unique; template<consult hashed_non_unique reference for arguments> struct hashed_non_unique; // indices namespace detail{ template<implementation defined> class index class name implementation defined; // index comparison: // OP is any of ==,!= template<implementation defined> bool operator OP(const index class name& x,const index class name& y); // index specialized algorithms: template<implementation defined> void swap(index class name& x,index class name& y); } // namespace boost::multi_index::detail } // namespace boost::multi_index } // namespace boost
hashed_unique and hashed_non_unique
These index specifiers allow
for insertion of hashed indices without and with
allowance of duplicate elements, respectively. The syntax of hashed_unique
and hashed_non_unique coincide, thus we describe them in a grouped manner.
hashed_unique and hashed_non_unique can be instantiated in
two different forms, according to whether a tag list for the index is provided or not:
template< typename KeyFromValue, typename Hash=boost::hash<KeyFromValue::result_type>, typename Pred=std::equal_to<KeyFromValue::result_type> > struct (hashed_unique | hashed_non_unique); template< typename TagList, typename KeyFromValue, typename Hash=boost::hash<KeyFromValue::result_type>, typename Pred=std::equal_to<KeyFromValue::result_type> > struct (hashed_unique | hashed_non_unique);
If provided, TagList must be an instantiation of the class template
tag.
The template arguments are used by the corresponding index implementation,
refer to the hashed indices reference section for further
explanations on their acceptable type values.
A hashed index provides fast retrieval of elements of a multi_index_container
through hashing techniques.
A hashed index is particularized according to a given
Key Extractor
that retrieves keys from elements of multi_index_container, a Hash
function object which returns hash values for the keys and a binary predicate Pred
acting as an equivalence relation on values of Key.
There are two variants of hashed indices: unique, which do not allow duplicate elements (with respect to its associated equality predicate) and non-unique, which accept those duplicates. The interface of these two variants is the same, so they are documented together, with minor differences explicitly stated when they exist.
Except where noted or if the corresponding interface does not exist, hashed indices (both unique and non-unique) satisfy the C++ requirements for unordered associative containers at [unord.req] (supporting unique and equivalent keys, respectively.) Validity of iterators and references to elements is preserved in all cases. Occasionally, the exception safety guarantees provided are actually stronger than required by the standard. We only provide descriptions of those types and operations that do not exactly conform to or are not mandated by the standard requirements.
namespace boost{ namespace multi_index{ namespace detail{ template<implementation defined: dependent on types Value, Allocator, TagList, KeyFromValue, Hash, Pred> class name is implementation defined { public: // types: typedef typename KeyFromValue::result_type key_type; typedef Value value_type; typedef KeyFromValue key_from_value; typedef Hash hasher; typedef Pred key_equal; typedef boost::tuple< size_type,key_from_value,hasher,key_equal> ctor_args; typedef TagList tag_list; typedef Allocator allocator_type; typedef typename Allocator::pointer pointer; typedef typename Allocator::const_pointer const_pointer; typedef typename Allocator::reference reference; typedef typename Allocator::const_reference const_reference; typedef implementation defined size_type; typedef implementation defined difference_type; typedef implementation defined iterator; typedef implementation defined const_iterator; typedef implementation defined local_iterator; typedef implementation defined const_local_iterator; // construct/destroy/copy: index class name& operator=(const index class name& x); index class name& operator=(std::initializer_list<value_type> list); allocator_type get_allocator()const noexcept; // size and capacity: bool empty()const noexcept; size_type size()const noexcept; size_type max_size()const noexcept; // iterators: iterator begin()noexcept; const_iterator begin()const noexcept; iterator end()noexcept; const_iterator end()const noexcept; const_iterator cbegin()const; const_iterator cend()const; iterator iterator_to(const value_type& x); const_iterator iterator_to(const value_type& x)const; // modifiers: template<typename... Args> std::pair<iterator,bool> emplace(Args&&... args); template<typename... Args> iterator emplace_hint(iterator position,Args&&... args); std::pair<iterator,bool> insert(const value_type& x); std::pair<iterator,bool> insert(value_type&& x); iterator insert(iterator position,const value_type& x); iterator insert(iterator position,value_type&& x); template<typename InputIterator> void insert(InputIterator first,InputIterator last); void insert(std::initializer_list<value_type> list); iterator erase(iterator position); size_type erase(const key_type& x); iterator erase(iterator first,iterator last); bool replace(iterator position,const value_type& x); bool replace(iterator position,value_type&& x); template<typename Modifier> bool modify(iterator position,Modifier mod); template<typename Modifier,typename Rollback> bool modify(iterator position,Modifier mod,Rollback back); template<typename Modifier> bool modify_key(iterator position,Modifier mod); template<typename Modifier,typename Rollback> bool modify_key(iterator position,Modifier mod,Rollback back); void clear()noexcept; void swap(index class name& x); // observers: key_from_value key_extractor()const; hasher hash_function()const; key_equal key_eq()const; // lookup: template<typename CompatibleKey> iterator find(const CompatibleKey& x)const; template< typename CompatibleKey,typename CompatibleHash, typename CompatiblePred > iterator find( const CompatibleKey& x, const CompatibleHash& hash,const CompatiblePred& eq)const; template<typename CompatibleKey> size_type count(const CompatibleKey& x)const; template< typename CompatibleKey,typename CompatibleHash, typename CompatiblePred > size_type count( const CompatibleKey& x, const CompatibleHash& hash,const CompatiblePred& eq)const; template<typename CompatibleKey> std::pair<iterator,iterator> equal_range(const CompatibleKey& x)const; template< typename CompatibleKey,typename CompatibleHash, typename CompatiblePred > std::pair<iterator,iterator> equal_range( const CompatibleKey& x, const CompatibleHash& hash,const CompatiblePred& eq)const; // bucket interface: size_type bucket_count()const noexcept; size_type max_bucket_count()const noexcept; size_type bucket_size(size_type n)const; size_type bucket(const key_type& k)const; local_iterator begin(size_type n); const_local_iterator begin(size_type n)const; local_iterator end(size_type n); const_local_iterator end(size_type n)const; const_local_iterator cbegin(size_type n)const; const_local_iterator cend(size_type n)const; local_iterator local_iterator_to(const value_type& x); const_local_iterator local_iterator_to(const value_type& x)const; // hash policy: float load_factor()const noexcept; float max_load_factor()const noexcept; void max_load_factor(float z); void rehash(size_type n); void reserve(size_type n); }; // index comparison: template<implementation defined> bool operator==(const index class name& x,const index class name& y); template<implementation defined> bool operator!=(const index class name& x,const index class name& y) { return !(x==y); } // index specialized algorithms: template<implementation defined> void swap(index class name& x,index class name& y); } // namespace boost::multi_index::detail } // namespace boost::multi_index } // namespace boost
Here and in the descriptions of operations of hashed indices, we adopt the scheme outlined in the complexity signature section. The complexity signature of hashed indices is:
c(n)=n*log(n),i(n)=1 (amortized constant),
worst case i(n)=ndist,h(n)=1 (amortized constant),
worst case h(n)=ndist,d(n)=1 (constant),r(n)=1 (constant),r(n)=1 (constant),
worst case r(n)=ndist,m(n)=1 (constant),
worst case m(n)=ndist,ndist is the number of non-equivalent elements out of
the total n.
Hashed indices are instantiated internally to multi_index_container and
specified by means of indexed_by
with index specifiers hashed_unique
and hashed_non_unique. Instantiations are dependent on the
following types:
Value from multi_index_container,Allocator from multi_index_container,TagList from the index specifier (if provided, otherwise tag<> is assumed),KeyFromValue from the index specifier,Hash from the index specifier,Pred from the index specifier.TagList must be an instantiation of
tag. The type KeyFromValue,
which determines the mechanism for extracting a key from Value,
must be a model of
Key Extractor from Value. Hash is a
CopyConstructibleunary function object
taking a single argument of type KeyFromValue::result_type and returning a
value of type std::size_t in the range
[0, std::numeric_limits<std::size_t>::max()).
Pred is a CopyConstructible binary predicate inducing an equivalence relation
on elements of KeyFromValue::result_type. It is required that
the Hash object return the same value for keys
equivalent under Pred.
ctor_args
The first element of this tuple indicates the minimum number of buckets set up by the index on construction time. If the default value 0 is used, an implementation defined number is used instead.
iterator
const_iterator
local_iterator
const_local_iterator
These types are forward iterators.
As explained in the index
concepts section, indices do not have public constructors or destructors.
Assignment, on the other hand, is provided. Upon construction,
max_load_factor() is 1.0.
index class name& operator=(const index class name& x);
Effects:wherea=b;aandbare themulti_index_containerobjects to which*thisandxbelong, respectively.
Returns:*this.
index class name& operator=(std::initializer_list<value_type> list);
Effects:wherea=list;ais themulti_index_containerobject to which*thisbelongs.
Returns:*this.
iterator iterator_to(const value_type& x);
const_iterator iterator_to(const value_type& x)const;
Requires:xis a reference to an element of the container.
Returns: An iterator tox.
Complexity: Constant.
Exception safety:nothrow.
template<typename... Args>
std::pair<iterator,bool> emplace(Args&&... args);
Requires:value_typeisEmplaceConstructibleintomulti_index_containerfromargs.
Effects: Inserts avalue_typeobject constructed withstd::forward<Args>(args)...into themulti_index_containerto which the index belongs ifReturns: The return value is a pair
- the index is non-unique OR no other element exists with equivalent key,
- AND insertion is allowed by all other indices of the
multi_index_container.p.p.secondistrueif and only if insertion took place. On successful insertion,p.firstpoints to the element inserted; otherwise,p.firstpoints to an element that caused the insertion to be banned. Note that more than one element can be causing insertion not to be allowed.
Complexity:O(I(n)).
Exception safety: Strong, except that rehashing may occur even if the operation fails.
template<typename... Args>
iterator emplace_hint(iterator position, Args&&... args);
Requires:value_typeisEmplaceConstructibleintomulti_index_containerfromargs.positionis a valid iterator of the index.
Effects: Inserts avalue_typeobject constructed withstd::forward<Args>(args)...into themulti_index_containerto which the index belongs if
- the index is non-unique OR no other element exists with equivalent key,
- AND insertion is allowed by all other indices of the
multi_index_container.positionis used as a hint to improve the efficiency of the operation.
Returns: On successful insertion, an iterator to the newly inserted element. Otherwise, an iterator to an element that caused the insertion to be banned. Note that more than one element can be causing insertion not to be allowed.
Complexity:O(H(n)).
Exception safety: Strong, except that rehashing may occur even if the operation fails.
std::pair<iterator,bool> insert(const value_type& x);std::pair<iterator,bool> insert(value_type&& x);
Requires (first version):value_typeisCopyInsertableintomulti_index_container.
Requires (second version):value_typeisMoveInsertableintomulti_index_container.
Effects: Insertsxinto themulti_index_containerto which the index belongs ifReturns: The return value is a pair
- the index is non-unique OR no other element exists with equivalent key,
- AND insertion is allowed by all other indices of the
multi_index_container.p.p.secondistrueif and only if insertion took place. On successful insertion,p.firstpoints to the element inserted; otherwise,p.firstpoints to an element that caused the insertion to be banned. Note that more than one element can be causing insertion not to be allowed.
Complexity:O(I(n)).
Exception safety: Strong, except that rehashing may occur even if the operation fails.
iterator insert(iterator position,const value_type& x);iterator insert(iterator position,value_type&& x);
Requires (first version):value_typeisCopyInsertableintomulti_index_container.positionis a valid iterator of the index.
Requires (second version):value_typeisMoveInsertableintomulti_index_container.positionis a valid iterator of the index.
Effects: Insertsxinto themulti_index_containerto which the index belongs if
- the index is non-unique OR no other element exists with equivalent key,
- AND insertion is allowed by all other indices of the
multi_index_container.positionis used as a hint to improve the efficiency of the operation.
Returns: On successful insertion, an iterator to the newly inserted element. Otherwise, an iterator to an element that caused the insertion to be banned. Note that more than one element can be causing insertion not to be allowed.
Complexity:O(H(n)).
Exception safety: Strong, except that rehashing may occur even if the operation fails.
template<typename InputIterator>
void insert(InputIterator first,InputIterator last);
Requires:InputIteratoris an input iterator.value_typeisEmplaceConstructibleintomulti_index_containerfrom*first.firstandlastare not iterators into any index of themulti_index_containerto which this index belongs.lastis reachable fromfirst.
Effects: For each element of [first,last), in this order, inserts it into themulti_index_containerto which this index belongs ifComplexity:
- the index is non-unique OR no other element exists with equivalent key,
- AND insertion is allowed by all other indices of the
multi_index_container.O(m*I(n+m)), wheremis the number of elements in [first,last).
Exception safety: Basic.
void insert(std::initializer_list<value_type> list);
Effects:insert(list.begin(),list.end());
iterator erase(iterator position);
Requires:positionis a valid dereferenceable iterator of the index.
Effects: Deletes the element pointed to byposition.
Returns: An iterator pointing to the element immediately following the one that was deleted, orend()if no such element exists.
Complexity:O(D(n)).
Exception safety:nothrow.
size_type erase(const key_type& x);
Effects: Deletes the elements with key equivalent tox.
Returns: Number of elements deleted.
Complexity: Average case,O(1 + m*D(n)), worst caseO(ndist + m*D(n)), wheremis the number of elements deleted.
Exception safety: Basic.
iterator erase(iterator first,iterator last);
Requires: [first,last) is a valid range of the index.
Effects: Deletes the elements in [first,last).
Returns:last.
Complexity:O(m*D(n)), wheremis the number of elements in [first,last).
Exception safety:nothrow.
bool replace(iterator position,const value_type& x);bool replace(iterator position,value_type&& x);
Requires (first version):value_typeisCopyAssignable.positionis a valid dereferenceable iterator of the index.
Requires (second version):value_typeisMoveAssignable.positionis a valid dereferenceable iterator of the index.
Effects: Assigns the valuexto the element pointed to bypositioninto themulti_index_containerto which the index belongs if, for the valuexPostconditions: Validity of
- the index is non-unique OR no other element exists (except possibly
*position) with equivalent key,- AND replacing is allowed by all other indices of the
multi_index_container.positionis preserved in all cases. If the key of the new value is equivalent to that of the replaced value, the position of the element does not change.
Returns:trueif the replacement took place,falseotherwise.
Complexity:O(R(n)).
Exception safety: Strong. If an exception is thrown by some user-provided operation themulti_index_containerto which the index belongs remains in its original state.
template<typename Modifier> bool modify(iterator position,Modifier mod);
Requires:modis a unary function object accepting arguments of typevalue_type&.positionis a valid dereferenceable iterator of the index. The execution ofmod(e), whereeis the element pointed to byposition, does not invoke any operation of themulti_index_containeraftereis directly modified or, before modification, if the operation would invalidateposition.
Effects: Callsmod(e)whereeis the element pointed to bypositionand rearranges*positioninto all the indices of themulti_index_container. Rearrangement is successful ifIf the rearrangement fails, the element is erased.
- the index is non-unique OR no other element exists with equivalent key,
- AND rearrangement is allowed by all other indices of the
multi_index_container.
Postconditions: Validity ofpositionis preserved if the operation succeeds. If the key of the modified value is equivalent to that of the original value, the position of the element does not change.
Returns:trueif the operation succeeded,falseotherwise.
Complexity:O(M(n)).
Exception safety: Basic. If an exception is thrown by some user-provided operation (except possiblymod), then the element pointed to bypositionis erased.
template<typename Modifier,typename Rollback>
bool modify(iterator position,Modifier mod,Rollback back);
Requires:modandbackare unary function objects accepting arguments of typevalue_type&.positionis a valid dereferenceable iterator of the index. The execution ofmod(e), whereeis the element pointed to byposition, does not invoke any operation of themulti_index_containeraftereis directly modified or, before modification, if the operation would invalidateposition.back(e)does not invoke any operation of themulti_index_container. The sequence of operationsmod(e),back(e)restores all keys of the element to their original state.
Effects: Callsmod(e)whereeis the element pointed to bypositionand tries to rearrange*positioninto all the indices of themulti_index_container. Rearrangement is successful ifIf the rearrangement fails,
- the index is non-unique OR no other element exists with equivalent key,
- AND rearrangement is allowed by all other indices of the
multi_index_container.back(e)is invoked and the element is kept at its original position in all indices.
Postconditions: Validity ofpositionis preserved except if the element is erased under the conditions described below. If the key of the modified value is equivalent to that of the original value, the position of the element does not change.
Returns:trueif the operation succeeded,falseotherwise.
Complexity:O(M(n)).
Exception safety: Strong, except ifbackthrows an exception, in which case the modified element is erased. Ifbackthrows inside the handling code executing after some other user-provided operation has thrown, it is the exception generated bybackthat is rethrown.
template<typename Modifier> bool modify_key(iterator position,Modifier mod);
Requires:key_from_valueis a read/writeKey Extractorfromvalue_type.modis a unary function object accepting arguments of typekey_type&.positionis a valid dereferenceable iterator of the index. The execution ofmod(k), wherekis the key of the element pointed to byposition, does not invoke any operation of themulti_index_containerafterkis directly modified or, before modification, if the operation would invalidateposition.
Effects: Equivalent tomodify(position,mod'), withmod'defined in such a way thatmod'(x)is the same asmod(key(x)), wherekeyis the internalKeyFromValueobject of the index.
template<typename Modifier,typename Rollback>
bool modify_key(iterator position,Modifier mod,Rollback back);
Requires:key_from_valueis a read/writeKey Extractorfromvalue_type.modandbackare unary function objects accepting arguments of typekey_type&.positionis a valid dereferenceable iterator of the index. The execution ofmod(k), wherekis the key of the element pointed to byposition, does not invoke any operation of themulti_index_containerafterkis directly modified or, before modification, if the operation would invalidateposition.back(k)does not invoke any operation of themulti_index_container. The sequence of operationsmod(k),back(k)restoreskto its original state.
Effects: Equivalent tomodify(position,mod',back'), withmod'andbackdefined in such a way thatmod'(x)is the same asmod(key(x))andback'(x)is the same asback(key(x)), wherekeyis the internalKeyFromValueobject of the index.
Apart from standard hash_function and key_eq,
hashed indices have a member function for retrieving the internal key extractor
used.
key_from_value key_extractor()const;
Returns a copy of thekey_from_valueobject used to construct the index.
Complexity: Constant.
Hashed indices provide the full lookup functionality required by
[unord.req], namely find,
count, and equal_range. Additionally,
these member functions are templatized to allow for non-standard
arguments, so extending the types of search operations allowed.
The kind of arguments permissible when invoking the lookup member
functions is defined by the following concept.
Consider a pair (Hash, Pred) where
Hash is a hash functor over values of type Key
and Pred is a binary predicate
inducing an equivalence relation
on Key, with the additional constraint that equivalent
keys have the same hash value.
A triplet of types (CompatibleKey, CompatibleHash,
CompatiblePred) is said to be a compatible extension
of (Hash, Pred) if
CompatibleHash is a hash functor on values of
type CompatibleKey,CompatiblePred is a binary predicate over (Key,
CompatibleKey),CompatiblePred is a binary predicate over (CompatibleKey,
Key),c_eq(ck,k1) then c_eq(k1,ck),c_eq(ck,k1) and eq(k1,k2) then
c_eq(ck,k2),c_eq(ck,k1) and c_eq(ck,k2) then
eq(k1,k2),c_eq(ck,k1) then c_hash(ck)==hash(k1),c_hash of type CompatibleHash,
c_eq of type CompatiblePred,
hash of type Hash,
eq of type Pred, ck of type
CompatibleKey and k1, k2 of type
Key.
Additionally, a type CompatibleKey is said to be a
compatible key of (Hash, Pred) if
(CompatibleKey, Hash, Pred)
is a compatible extension of (Hash, Pred).
This implies that Hash and Pred accept arguments
of type CompatibleKey, which usually means they have
several overloads of their corresponding operator()
member functions.
In the context of a compatible extension or a compatible key, the expression "equivalent key" takes on its obvious interpretation.
template<typename CompatibleKey> iterator find(const CompatibleKey& x)const;
Requires:CompatibleKeyis a compatible key of (hasher,key_equal).
Effects: Returns a pointer to an element whose key is equivalent tox, orend()if such an element does not exist.
Complexity: Average caseO(1)(constant), worst caseO(ndist).
template<
typename CompatibleKey,typename CompatibleHash, typename CompatiblePred
>
iterator find(
const CompatibleKey& x,
const CompatibleHash& hash,const CompatiblePred& eq)const;
Requires: (CompatibleKey,CompatibleHash,CompatiblePred) is a compatible extension of (hasher,key_equal).
Effects: Returns a pointer to an element whose key is equivalent tox, orend()if such an element does not exist.
Complexity: Average caseO(1)(constant), worst caseO(ndist).
template<typename CompatibleKey>
size_type count(const CompatibleKey& x)const;
Requires:CompatibleKeyis a compatible key of (hasher,key_equal).
Effects: Returns the number of elements with key equivalent tox.
Complexity: Average caseO(count(x)), worst caseO(count(x)+ndist).
template<
typename CompatibleKey,typename CompatibleHash, typename CompatiblePred
>
size_type count(
const CompatibleKey& x,
const CompatibleHash& hash,const CompatiblePred& eq)const;
Requires: (CompatibleKey,CompatibleHash,CompatiblePred) is a compatible extension of (hasher,key_equal).
Effects: Returns the number of elements with key equivalent tox.
Complexity: Average caseO(count(x,hash,eq)), worst caseO(count(x,hash,eq)+ndist).
template<typename CompatibleKey>
std::pair<iterator,iterator> equal_range(const CompatibleKey& x)const;
Requires:CompatibleKeyis a compatible key of (hasher,key_equal).
Effects: Returns a range containing all elements with keys equivalent tox(and only those), or (end(),end()) if no such elements exist.
Complexity: Average caseO(1)(constant), worst caseO(ndist).
template<
typename CompatibleKey,typename CompatibleHash, typename CompatiblePred
>
std::pair<iterator,iterator> equal_range(
const CompatibleKey& x,
const CompatibleHash& hash,const CompatiblePred& eq)const;
Requires: (CompatibleKey,CompatibleHash,CompatiblePred) is a compatible extension of (hasher,key_equal).
Effects: Returns a range containing all elements with keys equivalent tox(and only those), or (end(),end()) if no such elements exist.
Complexity: Average caseO(1)(constant), worst caseO(ndist).
local_iterator local_iterator_to(const value_type& x);
const_local_iterator local_iterator_to(const value_type& x)const;
Requires:xis a reference to an element of the container.
Returns: An iterator tox.
Complexity: Constant.
Exception safety:nothrow.
void rehash(size_type n);
Effects: Increases if necessary the number of internal buckets so thatsize()/bucket_count()does not exceed the maximum load factor, andbucket_count()>=n.
Postconditions: Validity of iterators and references to the elements contained is preserved.
Complexity:O(m), wheremis the number of non-equivalent elements in the index.
Exception safety: Strong.
void reserve(size_type n);
Effects:rehash(std::ceil(n/max_load_factor()));
template<implementation defined>
bool operator==(const index class name& x,const index class name& y);
Requires:x.key_extractor(),x.hash_function()andx.key_eq()have the same behavior as the corresponding objects iny. For any two elementse1,e2inxory, ife1==e2then their keys are equivalent.
Returns:trueiffxandyhave the same size and for each keykpresent inxthe rangex.equal_range(k)is equal (considering the==operator ofvalue_type) toy.equal_range(k)under permutations of the elements.
Complexity: Letk1,...,kmbe the different keys present inx:
(For unique indices, the formulas above reduce to average case
- If, for each
ki,x.equal_range(ki)is arranged in the same order asy.equal_range(ki), average case isO(x.size()), worst caseO(x.size()2).- Otherwise, average case is
O(Σ(x.count(ki)2)), worst caseO(x.size()2).O(x.size()), worst caseO(x.size()2).)
Indices cannot be serialized on their own, but only as part of the
multi_index_container into which they are embedded. In describing
the additional preconditions and guarantees associated to hashed indices
with respect to serialization of their embedding containers, we
use the concepts defined in the multi_index_container
serialization section.
multi_index_container m to an
output archive (XML archive) ar.
Requires: No additional requirements to those imposed by the container.Operation: loading of a
multi_index_container m' from an
input archive (XML archive) ar.
Requires: Additionally to the general requirements,Operation: saving of ankey_eq()must be serialization-compatible withm.get<i>().key_eq(), whereiis the position of the hashed index in the container.
Postconditions: On successful loading, the range [begin(),end()) contains restored copies of every element in [m.get<i>().begin(),m.get<i>().end()), though not necessarily in the same order.
iterator or const_iterator
it to an output archive (XML archive) ar.
Requires:Operation: loading of anitis a valid iterator of the index. The associatedmulti_index_containerhas been previously saved.
iterator or const_iterator
it' from an input archive (XML archive) ar.
Postconditions: On successful loading, ifOperation: saving of aitwas dereferenceable then*it'is the restored copy of*it, otherwiseit'==end().
Note: It is allowed thatitbe aconst_iteratorand the restoredit'aniterator, or vice versa.
local_iterator or
const_local_iterator
it to an output archive (XML archive) ar.
Requires:Operation: loading of aitis a valid local iterator of the index. The associatedmulti_index_containerhas been previously saved.
local_iterator or
const_local_iterator
it' from an input archive (XML archive) ar.
Postconditions: On successful loading, ifitwas dereferenceable then*it'is the restored copy of*it; ifitwasm.get<i>().end(n)for somen, thenit'==m'.get<i>().end(n)(wheremis the originalmulti_index_container,m'its restored copy andiis the ordinal of the index.)
Note: It is allowed thatitbe aconst_local_iteratorand the restoredit'alocal_iterator, or vice versa.
Revised November 26th 2015
© Copyright 2003-2015 Joaquín M López Muñoz. Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)